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ABSTRACT

A nonlinear representation for the rapid-pressure correlation appearing in the Reynolds stress equa-

tions, consistent with the Taylor-Proudman theorem, is presented. The representation insures that

the modeled second-order equations are frame-invariant with respect to rotation when the 
ow is

two-dimensional in planes perpendicular to the axis of rotation. The representation satis�es real-

izability in a new way: a special ansatz is used to obtain, analytically, the values of coe�cients

valid away from the realizability limit: the model coe�cients are functions of the state of the tur-

bulence that are valid for all states of the mechanical turbulence attaining their constant limiting

values only when the limit state is achieved. Utilization of all the mathematical constraints are

not enough to specify all the coe�cients in the model. The unspeci�ed coe�cients appear as free

parameters which are used to insure that the representation is asymptotically consistent with the

known equilibrium states of a homogeneous sheared turbulence. This is done by insuring that the

modeled evolution equations have the same �xed points as those obtained from computer and labo-

ratory experiments for the homogeneous shear. Results of computations of the homogeneous shear,

with and without rotation, and with stabilizing and destabilizing curvature, are shown. Results

are consistently better, in a wide class of 
ows which the model not been calibrated, than those

obtained with other nonlinear models.
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1. Introduction

Most turbulence models are devised for use in inertial coordinate systems. Ad hoc changes are

then made to re
ect the unusual e�ects on turbulence of swirl, curved streamlines or rotation of

the coordinate system: one makes the length scale depend on Richardson number or adds terms

to the dissipation equation calibrated to observed behavior. This approach does not make use of

the mathematical requirements that the dependent variables and their evolution equations must

satisfy and leads to models that perform poorly when used in situations substantially di�erent

from the benchmark 
ows for which they have been calibrated. There is no reason a second-order

modeling method cannot be successfully applied to a high Reynolds number rotating turbulence:

no new unknown terms appear in the equations and, for moderate Rossby number, very little of

the phenomenology on which the technique is based changes.

The e�ect of rotation on the second-order moments is felt through the rapid-pressure-velocity cor-

relation and the Coriolis terms. The di�culty with the equations, as modeled presently, can be seen

when the equations are transformed to a rotating coordinate system: they are not materially-frame-

indi�erent in the two-dimensional limit, Speziale (1981), Hide (1977). This phenomenon, predicted

by the Taylor-Proudman theorem requires that when the velocity �eld is two-dimensionalized by

rapid rotation, without components along the axis of rotation, the equations must be independent

of rotation. The problem with the current modeled second-order equations results from the inabil-

ity of the rapid-pressure correlation model to re
ect the physics embodied in the Taylor-Proudman

theorem. This is another form of realizability: one must obtain, for a bounded 
ow, in the limit of

rapid rotation, a frame-indi�erent turbulence. In such a turbulence the rapid-pressure correlation

appearing on the right hand side of the second order moment evolution equations equals the Cori-

olis terms appearing on the left hand side leaving the equations frame-indi�erent. A rapid-pressure

model consistent with these facts, re
ecting more of the information contained in the Navier-Stokes

equations, is required.

As a general tool is being developed to compute a wide class of 
ows for which there may not be any

well documented benchmark 
ows with which to calibrate coe�cients, it is necessary to construct a

model from �rst principles, incorporating more of the physics. In the present new representation for

the rapid-pressure strain correlation the use of all constants that do not come from �rst principles

have been minimized: This is done this by requiring the representation to have the proper behavior

in �ve di�erent limits: 1) frame invariant with respect to rotation when the eigenvalue of the

Reynolds stress tensor, < uiuj >, along the axis of rotation vanishes, 2) the realizable limit in

which an arbitrary eigenvalue of the Reynolds stress vanishes, 3) the joint-realizable limit in which

an eigenvalue of the tensor < �� >< uiuj > � < �ui >< �uj > vanishes, 4) the isotropic limit in

which the anisotropy tensor, bij = 0, and 5) asymptotic consistency with a stationary state of the

turbulence in which D=Dt bij = 0. Of these �ve principles the last one is a statement based on
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experimental observation rather than mathematical fact. It is tacitly asusmed that for a speci�c

class of 
ows, to a reasonably suitable approximation, there exists an equilibrium state to which

the 
ow relaxes upon the removal of any disturbing forces.

Assuring the proper frame-invariance of the modeled second moment equations is done by requiring

that in the limit of a turbulence two-dimensional in planes perpendicular to the axes of rotation

the rapid-pressure velocity correlations in the heat-
ux and Reynolds stress equations satisfy the

"geostrophic" constraints, Ristorcelli (1987) and Ristorcelli and Lumley (1991b):

�pqn
nXipqj = �qjn
n < uiuq >

�pqn
nXpqi = �qin
n < uq� > :

The term geostrophic is borrowed from the meteorological literature where it is used to describe

the low Rossby number balance between Coriolis and pressure forces in the evolution equations for

large scale weather. The constraint, however, is independent of how the 
ow is two-dimensionalized

and is, therefore, independent of Rossby number. The requirements of the Taylor-Proudman

theorem are subsumed by the requirements of the principle of two-dimensional frame invariance

(2DMFI) �rst put forward, in the context of turbulence modeling, by Speziale (1981). A 
ow that

is two-dimensionalized due to stable strati�cation or magnetic forces is also frame-indi�erent in

the two-dimensional two-component limit and the rapid-pressure correlation must still satisfy the

geostrophic constraint for arbitrary rotation.

The requirement of two-dimensional material-frame-invariance comes from �rst principles: it is

a rigorous limit of the Navier-Stokes equations for the 
uctuating velocity, Speziale (1990). The

principle of 2DMFI seems to have been given short shrift. Reynolds (1989), in a rapid distortion

theory analysis of a decaying turbulence, has shown that rotation has a distinct e�ect on the sec-

ond invariant, II, of the anisotropy tensor, bij , and goes on further to show that the equations for

the invariants using the current rapid-pressure models are independent of rotation. He concludes

that such models, because they don't show an explicit dependence on the rotation in the evolu-

tion equations for the invariants, are inadequate for rotating 
ows. A reference to the evolution

equations for the invariants, for example Speziale et al. (1991), shows that both the production

and dissipation, which are functions of the rotation through their dependence on the Reynolds

stresses, appear in the evolution equations for the invariants. The equations, except for the case of

a decaying turbulence in which there are no production terms, are not independent of rotation.

Shih and Shabbir (1990), following Reynolds argument decide that since the rotation terms do not

explicitly appear in the evolution equation for the invariants (which is true for any rapid-pressure

model that is a function of symmetric tensors) that the use of a properly frame-indi�erent model will

not produce the proper turbulence behavior. This argument is specious: the same argument applied

to the trace of the Reynolds stress, the kinetic energy of the turbulence, q2 =< upup >, one would

abandon re�nement of rapid-pressure models because they do not a�ect the energy of the turbulence
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- the evolution equation for q2 being independent of the rapid-pressure modeling. However, di�erent

rapid-pressure models produce di�erent Reynolds stresses and di�erent turbulence energies in the

same 
ows. Even if the models fails to account for some predictions of RDT for a restricted class

of 
ows neglecting results that are rigorous consequences of the Navier-Stokes equations, Speziale

(1990), are not justi�ed. (It should be kept in mind that the RDT limit violates various equilibrium

assumptions made in the mathematical development of the second-order modeling method). The

2DMFI constraint is relevant to 
ows other than rotating 
ows: any 
ows in which the largest

scales of the motion are two-dimensionalized by strong body forces will come arbitrarily close to

being rotationally frame invariant. A dramatic example of this might be the collapse of the wake

in a stably strati�ed environment. Shih and Shabbir (1990) also cite Reynolds (1987) as having

shown that the 2DMFI constraint does not provide any new information. Here it is found that

the geostrophic constraint produces six additional linearly independent constraint equations for the

rapid-pressure model.

The present article is a description of the derivation and validation of a rapid-pressure model

that satis�es the principle of material-frame-indi�erence in the two-dimensional limit. The present

derivation of the 2DMFI model has been given earlier, in departmental reports in Ristorcelli (1987,

1991) or Ristorcelli and Lumley (1991b). In those previous developments of the 2DMFI model

several free parameters were, for simplicity, set to zero. In this paper the stationary points of the

homogeneous shear, as re
ected in the structural equilibrium assumption, D=Dt bij = 0 where

bij =< uiuj > = < upup > � 1=3�ij , are used to set the unknown free parameters occurring in the

model. The algebraic equations describing the stationary states of the homogeneous shear along

with the experimentally determined values of the stationary state are used as constraints to set

the free parameters in the model. This insures that the �xed points of the modeled di�erential

equations are the same as the �xed points of a particular physical 
ow. This calibration is done

without sacri�cing any of the mathematical principles built into the model.

The next section of this article de�nes the problem. A third section presents a derivation of the

tensor polynomial model for the rapid-pressure correlation. A discussion of the constraints as well

as a derivation of the new geostrophic constraint is given. A new ansatz for the rapid-pressure

correlation produces a model valid away from both the geostrophic (two-dimensional in planes

perpendicular to the axis of rotation) and realizability limits (two-dimensional in that one of the

eigenvalues of the Reynolds stress tensor dissappears). The issues of realizability in the light of

some recent work, Speziale (1993), are discussed. A subsequent section uses results from matrix

algebra to collapse the model to a structure similar to other rapid-pressure models with some

interesting di�erences. The model is seen to have the same tensor bases as the FLT model and in

the limit of a planar mean 
ow it has the same tensor bases as the quasi-linear SSG model. The

two subsequent sections show computations done with the model and compare the results to other
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models. Following this a general discussion of modeling issues, in the context of realizability and

the use of stationary states as the only self-consistent asymptotic limit for calibrating turbulence

models is given.

2. The rapid-pressure correlation

In an incompressible turbulence in a rotating coordinate system, with buoyancy e�ects in the

Boussinesq approximation, the Reynolds stress equations have the following form:

D=Dt < uiuj > +2(�ikp < upuj > +�jkp < upui >)
kRo
�1 = + < �ui > �j+ < �uj > �i

�[< ujup > Ui;p+ < uiup > Uj ;p ] � < uiujup >;p
�[< p;j ui > + < p;i uj >] +Re�1 < uiuj >;pp� 2Re�1 < ui;p uj ;p>

D=Dt < �ui > +2�pik
k < �up > Ro�1 = �[< �uj > Ui;j+ < uiuj > T;j]+ < �� > �i
� < �uiuj >;j � < p;i� >

+Re�1(1 + Pr�1)(< �ui >;jj �2 < �;jui;j > :

The velocity has been normalized by a characteristic velocity uc and the Rossby number is Ro =

uc=
Rc where Rc is a length scale and 
 the rotation rate of the frame of reference. The gravity

and rotation vectors are aligned with the 3 axis. Our concern is with the pressure-velocity and

-temperature correlations, < p;j ui > and < p;i � >. An equation for the pressure 
uctuations

comes from the divergence of the Navier-Stokes equations for the 
uctuating velocity

ui;t+ujUi;j +Ujui;j +ujui;j � < uiuj >;j +2�ikp
kupRo
�1 = �p;i+��i +Re�1ui;jj

which produces a Poisson equation for 
uctuating pressure. The standard linear decomposition

recognizes three terms
�pr

;ii
= 2[Ui;p+�pik
kRo

�1]up;i
�ps

;ii
= ui;j uj ;i� < ui;j uj ;i>

pb
;ii
= �i�;i

where pr; ps; pb are respectively the rapid-pressure, the slow or return to isotropy pressure, and the

buoyancy-pressure. The e�ects of rotation are felt through the rapid-pressure, pr. Solution of the

Poisson equation for the rapid-pressure is by application of Green's theorem

�(x) = � (4�)�1
R
�(x0);jjdx

0=(x� x0):

It is the moments of the solution that are required to close the second-order equations. For a

homogeneous mean �eld, more than an integral scale away from any surfaces, a staightforward

interchange of the order integration and averaging produces:

< pr;j ui > + < pr;i uj >= �2[Uq;p+�pqk
kRo
�1][Xipqj +Xjpqi]

< pr;i � >= �2[Uq;p+�pqk
kRo
�1]Xpiq

where
Xpiq = (4�)�1

R
< �(x)up(x

0) >;i0q0 dx
0=(x� x0)

Xipqj = (4�)�1
R
< ui(x)up(x0) >;j0q0 dx

0=(x� x0):
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The construction of a tensor polynomial model for the volume integrals of the two-point correlations,

Xijkl and Xijk , is the subject of this article. The rapid-pressure covariance integral appearing in

the heat 
ux equations, Xijk, is treated as the Reynolds stresses and the heat 
uxes are linked

through Cauchy-Schwarz inequalities, < �� >< uiuj > � < �ui >< �uj > � 0 and their modeling

cannot be done independently. The rapid-pressure term appearing in the Reynolds stress equations

necessary to treat the mechanical turbulence problem is the focus of this article.

3. Obtaining a representation for the rapid-pressure correlation

A constitutive relation in which the integral of the two-point covariance is parameterized by a local

function of the anisotropy tensor and heat-
ux vector is proposed. The most general forms of such

relationships are the following tensor polynomials

Xijkl= < upup >= A1�ij�kl + A2(�ik�jl + �il�jk)
+ A3�ijbkl +A4bij�kl + A5(bik�jl + bil�jk + �ikbjl + �ilbjk)
+ A6�ijb

2

kl
+A7b

2
ij
�kl + A8(b2ik�jl + b2

il
�jk + �ikb

2

jl
+ �ilb

2

jk
)

+ A9bijbkl + A10(bikbjl + bilbjk)
+ A11bijb

2
kl
+A12b

2
ij
bkl + A13(b2ikbjl + b2

il
bjk + bikb

2
jl
+ bilb

2
jk
)

+ A14b
2
ij
b2
kl
+A15(b2ikb

2
jl
+ b2

il
b2
jk
)

Xpkj = D1 < �up > �kj +D2(< �uk > �pj+ < �uj > �pk)
+ D3 < �up > bkj +D4(< �uk > bpj+ < �uj > bpk)
+ D5 < �up > b2

kj
+D6(< �uk > b2

pj
+ < �uj > b2

pk
)

+ [D7bqp�kj +D8(bqk�pj + bqj�pk)] < �uq >

+ [D9bqpbkj +D10(bqkbpj + bqjbpk)] < �uq >

+ [D11bqpb
2

kj
+D12(bqkb

2
pj
+ bqjb

2

pk
)] < �uq >

+ [D13b
2
qp
�kj +D14(b2qk�pj + b2

qj
�pk)] < �uq >

+ [D15b
2
qpbkj +D16(b

2

qk
bpj + b2

qj
bpk)] < �uq >

+ [D17b
2
qpb

2

kj
+D18(b

2

qk
b2
pj
+ b2

qj
b2
pk
)] < �uq >

where bij is the anisotropy tensor bij =< uiuj > = < uquq > �1=3�ij and < �ui > is the turbulent

heat-
ux. Following Pope's linearity principle only terms linear in the heat-
ux are kept. The Ai

and Di are functions of the invariants of bij and < �ui >.

Parameterizing the integral of a two-point correlation in terms of the local anisotropy tensor is a

substantial simpli�cation requiring consideration. For a turbulence with short term memory and

limited awareness Lumley (1970) has discussed the conditions under which such a constitutive

relation is tenable and carried out a similar expansion procedure, Lumley (1967), indicating how

the truncation errors scale. >From one point of view, the constitutive relation proposed can be seen

as the �rst term in a functional Taylor series expansion for the rapid-pressure correlation. As the

correlation decays with distance the primary contribution to the integral will come from regions

within an integral length scale of the local position - thus, in a homogeneous turbulence, the �rst
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term will constitute a good approximation. Retaining higher order terms of the functional Taylor

series expansion which involves spatial and temporal derivatives of bij substantially complicates

the problem. It is expected that the retention of only the �rst order term captures enough of the

physics to allow prediction suitable for engineering purposes.

In applying the above constitutive relation in non-inertial systems there are several phenomena,

peculiar to rotating 
ows, that may be in con
ict with the assumptions of the turbulence closure.

In particular the inertial wave �eld associated with the rotation may interfere with: 1) the energy

cascade from the large to the small scales of the 
ow, 2) the universal equilibrium assumed for

the small scales of the 
ow, and 3) the assumed steadiness of the mean 
ow. These issues require

consideration.

In a mean 
ow rotating with speed 
 there will be inertial oscillations with frequency less than or

equal to 2
. For a quasi-steady assumption to be valid, changes in the mean 
ow must be slow with

respect to the turbulence's ability to adjust to the imposed changes. This requires that 2
 < "=k

and becomes a lower bound for a Rossby number, Ro = "=2
k > 1, for which an equilibrium theory

is appropriate.

Similar to a stably strati�ed density �eld in which strati�cation inhibits particle motions in the

vertical direction, rotation inhibits transverse displacements of 
uid particles. Similar to the radius

of gyration of a charged particle in a magnetic �eld, the lateral displacement of a turbulent 
uid

element in a rotating frame can be characterized by a length scale (q2=3)1=2=2
 where q2 =< ujuj >.

This length scale must be larger than the turbulence length scale ` � (q2=3)3=2=" to insure that the

transverse con�nement by the Coriolis forces does not a�ect the 
uctuating �eld. This produces a

similar bound on the turbulent Rossby number Ro = "=2
k > 3=2.

The phase coherence necessary for the cascade of energy to the smaller scales of the motion will

be interfered with if the production scales of the motion �` � 1, where � is the wavenumber, are

subject to an inertial wave �eld. A di�erent Rossby number can be de�ned as a ratio of the vorticity

of the production scales of the motion to the background vorticity Rot = (q2=3)1=2=2
` = 3"=2
q2

using " = (q2=3)1=2=`. A spectral Rossby number can also be de�ned as Ro(�) = u(�)=2
`(�) =

(�E(�))1=2=2
(2�=�) which using the inertial range scaling E(�) = �"2=3��5=3 and " = (q2=3)1=2=`

becomes Ro(�) � 0:2(�`)2=3Rot. The e�ects of rotation decrease as the wave number increases. For

the inertial oscillations associated with the rotation not to interfere with the cascade mechanism

Ro(�) > 1 for �` � 1 is required. Thus for Rot � 5 the usual parameterization of the spectral

cascade rate, ", in terms of the energy containing scales of the motion is appropriate. ForRot < 5 the

current dissipation equation requires modi�cation. How the dissipation equation is to be changed

to account for the e�ects of rotation on the cascade rate is an unresolved issue that is the topic

of current research. It is, however, clear that the assumption of the small scale equilibrium with
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the large scales of the motion is valid in most high Reynolds number rotating 
ows of interest:

the Rossby number of the dissipation scales of the motion is Ro" = Re
1=2

`
Rot and therefore the

dissipation scales are insensitive to the e�ects of rotation.

Having dealt with some of the phenomenological issues, the mathematical constraints required of

the pressure-velocity correlation are now investigated.

There are several physical inequalities and mathematical identities the X must satisfy. These prin-

ciples are used to obtain a set of algebraic constraint equations for the Ai and Di. For an arbitrary

three-dimensional turbulence the tensor polynomials must satisfy the symmetry constraints,

Xijkl = Xijlk

Xijkl = Xjikl

Xijk = Xikj :

These symmetry constraints are built in to the assumed form of the tensor polynomials. For an

arbitrary three-dimensional turbulence the tensor polynomials must also satisfy the constraints of

normalization, continuity:

Xijkk = < uiuj > Xikk = < ui� >

Xijjk = 0 Xiji = 0:

Note that a contraction of the integral of a two-point statistic is a local one-point statistic.

The tensors < uiuj > and < �� >< uiuj > � < �ui >< �uj > are positive semi-de�nite. This

re
ects the fact that the energy of the turbulence is always positive and that the magnitude of the

correlation coe�cients between the various components of the tensors be bounded by one. These

facts lead to the "realizability" and "joint-realizability" constraints which specify the behavior of

the correlations when speci�c limit states are approached. The relevant portion of the Reynolds

stress transport equations, in principal axes, requires that

D=Dt < u�u� > � [Up;i+�ipk
kRo
�1]Xi�p� ! 0 as < u�u� >! 0

in order to satisfy realizability. The rate of change, due to the rapid-pressure correlation, of the

eigenvalue < u�u� > is required to vanish as the limit state is approached. This insures that the

rapid-pressure correlation model does not cause the solution to go into the unrealizable region in

which < u�u� > is negative. This realizability limit is rephrased in terms of the determinant of

the Reynolds stress: F = (R3
jj
� 3RjjR

2
jj
+ 2R3

jj
)=6 where Rij =< uiuj > = < upup > which

can be written in terms of the invariants of the anisotropy tensor as F = 1 + 9II + 27III where

II = �1=2bijbij = �1=2 < b2 >, III = 1=3bipbpjbji = 1=3 < b3 >. The determinant F varies

between zero and one; F = 1 corresponds to an isotropic turbulence and F = 0 corresponds to the

realizable limit.
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Similar reasoning applied to the mixed tensor involving the Reynolds stress, the heat 
ux and the

variance of the temperature 
uctuations, produces the "joint-realizability" constraint

D=Dt D�� � [Up;i+�ipk
kRo
�1][< �� > Xi�p�� < �u� > Xi�p]! 0 as D�� ! 0

which couples the rapid-pressure correlations appearing in the heat 
ux and the Reynolds stress

equations. A similar determinant function Fd is de�ned with the normalized Dij , for which 0 �

Fd � 1. Joint-realizability re
ects the requirement that the magnitude of the correlation coe�cients

be bounded by one: the Reynolds stress and the heat-
ux take on values "jointly" such that the

time rate of change of D�� goes to zero as D�� goes to zero. Additional detail regarding the

application of realizability constraints can be found in Shih and Lumley (1985).

Note that no assumptions regarding the higher order derivatives of the eigenvalue have been made.

The strong form of realizability, in which D2=Dt2 < u�u� > > 0 is required at the realizability

limit in order to allow the turbulence to leave the realizable state is not invoked. Such an agency is

already present in the slow terms and it is not necessary to force the rapid terms to be responsible

for such behavior which, as will be seen, is inconsistent with the a small parameter expansion

of the rapid-pressure representation around the realizability limit. Instead a weak realizability

constraint, as speci�ed by Speciale et al. (1993), Pope (1983), which does not allow the solution

to attain the realizable limit in �nite time is invoked. This is done by requiring that the rapid-

pressure correlation vanish more rapidly than the slow-pressure correlation model. This avoids

any assumptions regarding the behavior of the second derivative which are required for the 
ow to

leave the realizable state which is accessible in �nite time in models using the strong form of the

realizability constraint. Moreover recent work by Speziale et al. (1993) indicates that the present

hierarchy of second-order models is inconsistent with the strong form of the realizability constraint.

The rate of rotation of the eigenvalues coming from the second derivative is a sink term of a form

that that cannot be balanced by the present models. In setting the portion of D=Dt < u�u� >

due to the rapid-pressure correlation to zero while choosing a return term model that precludes

accessibility of the realizable limit state the weak form of realizability is satis�ed by the sum of the

modeled terms on the right hand side of the transport equations. The issue raised by Speziale et

al. (1993) does not impact on the present model, as all the higher order derivatives vanish, and the

realizable limit is not attainable in �nite time because the relative rate of dissappearance of the

slow-pressure terms with respect to the rapid-pressure terms. It may, however, require a rethinking

of the modeling principles so that the intrinsic negativity of the second derivative can be properly

balanced if the realizable limit is to be considered accessible.

The last of the constraints to be applied to specify the constitutive relation, the geostrophic con-

straint, is now discussed. The derivation of the constraint, as it has not been given elsewhere in

the published literature, Ristorcelli (1991), is given. For a turbulence two-dimensional in planes
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perpendicular to the axis of rotation Hide(1977) and Speziale (1985, 1990) have shown that the

equations are materially-frame-indi�erent. This is a direct consequence of the Taylor-Proudman

theorem. For a modeled set of equations to be consistent with the 2DMFI principle the rapid-

pressure correlations must satisfy the "geostrophic" constraints,

�pqn
nXipqj = �qjn
n < uiuq >

�pqn
nXpqi = �qin
n < uq� > :

Consider the portion of the rapid-pressure correlation associated with the rotation

�pqk
kRo
�1Xipqj = �pqk
k(4�Ro)

�1
R
< ui(x)up(x

0) >;j0q0 dx
0=(x� x0):

A velocity �eld, two-dimensional in planes perpendicular to the axis of rotation, has the representa-

tion up = �pqk
k ;q. Inserting the expression for the velocity �eld into the integral and contracting

produces, in the integrand, the Laplacian of the streamfunction,  ;p= �qpk
kuq which reduces the

volume integral of a two-point statistic to a local one-point statistic,

�pqk
kRo
�1Xipqj = Ro�1 < ui ;j>= Ro�1�pjk
k < uiup >

upon application of Green's theorem. The geostrophic constraint �pqn
nXipqj = �qjn
n < uiuq >

then follows. The satisfaction of the geostrophic constraint means that, when the turbulence is

two-dimensional in planes perpendicular to the axis of rotation, the portion of the rapid-pressure

correlation associated with the rotation is equal to the Coriolis terms e�ectively removing any

dependence on the rotation rate from the equations. Such a Coriolis-pressure force balance is

found in the large scale atmosphere were it describes the well-known geostrophic wind. A point on

nomenclature: a geostrophic turbulence is one that is two-dimensional because its Rossby number

is small. This latter quali�cation distinguishes it from a two-dimensional turbulence (that is made

so by some other means) for arbitrary Rossby number. Both, however, are frame-indi�erent.

The application of the �ve sets of constraints - normalization, continuity, realizability, joint-

realizability and geostrophy - produce thirty-six linear algebraic equations (several of which are

redundant) for the thirty-three unknown coe�cients Ai; (i = 1; 15) and Di; (i = 1; 18) appear-

ing in the tensor polynomials. The equations are of the general form Aij(II; III)xj = bi where

xi = [A1; :::; A15; D1; :::; D18] and where II and III are the invariants of the anisotropy tensor,

II = �1=2bijbij = �1=2 < b2 >, III = 1=3bipbpjbji = 1=3 < b3 >. Using the de�nition

F = 1 + 9II + 27III the general form of the equations can be rewritten as Aij(II; F )xj = bi.

Note that F and II appear linearly in the constraint equations.

The ansatz
Xijkl = X0

ijkl
+ FXF

ijkl

Xijk = X0
ijk

+ FXF

ijk

is used to extract more information from the constraint equations. Here X0 satis�es the set of

constraint equations Aij(II; 0)x
0
j
= bi obtained by application of all �ve sets of constraints which
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are simultaneously valid only when F = 0 (or equivalently when III = �(II + 1=9)=3). While

XF is obtained from the reduced set of equations Aij(II; F )x
F

j
= b0

i
which satisfy the three sets of

constraints of normalization, continuity and joint-realizability and where b0
i
is a known function of

the X0 solution. As there are more unknowns than equations there are free parameters which will

be used shortly to insure that the model is asymptotically consistent with an equilibrium state.

The solution, in which all free parameters are set to zero, and which satisfy all the mathematical

constraints, will be called the basic model and has been given in Ristorcelli (1987,1991) and Ris-

torcelli and Lumley (1991b). These coe�cients are given in Appendix 3. It is to this basic model

that additional terms are added in order to insure that the model is asymptotically consistent with

a known equilibrium state of a particular turbulent 
ow �eld.

In reference to the coe�cients, Ai, of the basic model and de�ned in Appendix 3, several comments

are appropriate. The Ai are nonlinear functions of the invariants of bij : they are ratios of polyno-

mials of the invariants. The realizability limit is attained along the line III = �(II + 1=9)=3 on

which F = 0. At the isotropic limit II = III = 0 and F = 1, and thus A1+A2 = 1=10 and the well

known exact result for isotropic turbulence is obtained. Note that the "o�-realizability" correction

FXF is necessary to obtain this limit. The satisfaction of the isotropic limit is discovered to be

a consequence of the constraints used to create the 2DMFI model - it is not a constraint that has

been enforced to obtain the model but is satis�ed naturally by the ansatz. This seems to vindicate

the present procedure.

Note that the coe�cients appear to be singular at the one-dimensional limit when 1 + 3II = 0.

This is actually not the case as the singularities arising from the individual terms in the rapid

pressure representation annihilate each other when summed. This has beeen veri�ed analytically

near the one dimensional limit, as II ! �1=3, in principle axes of the Reynolds stress tensor using

a perturbation expansion.

It should be emphasized that the form of the rapid-pressure correlations was chosen so that the

coe�cients are valid for all states of the turbulence - they are not �xed to their values at the real-

izable limit. The resulting model therefore satis�es all mathematical constraints for any arbitrary

Reynolds stress - not just at the realizability or geostrophic limit states. The second term, FXF ,

in the expression for X, represents the "o�-realizability correction", thus the coe�cients, Ai and

Di, are functions dependent on the state of the turbulence as parameterized by the invariants and

only attain their realizable limit values at F = 0.

4. A compact representation of the 2DMFI rapid-pressure model

The rapid-pressure correlation models are usually written in the form they appear in the Reynolds

10



stress equations with:

Q
r

i
= 2[Uq;p+�pqk
kRo

�1]XpiqQ
r

ij
= 2[Uq;p+�pqk
kRo

�1][Xipqj +Xjpqi]:

which can be rewritten in terms of the strain and rotation tensors as

Q
r

ij
= 2[Sqp +Wqp][Xipqj +Xjpqi]

where Sqp = 1=2(Uq;p+Up;q) and Wqp = [1=2(Uq;p�Up;q) + �pqk
kRo
�1] are the usual mean strain

rate and the total or intrinsic rotation rate. The second-order equations are then rewritten as

D=Dt < uiuj > +2�ikp < upuj > 
Ro�1 + 2�jkp < upui > 
kRo
�1 = +

Q
r

ij
+
Q

s

ij
+:::

D=Dt < �ui > +2�pik
k < �up > Ro�1 = +
Q

r

i
+
Q

s

i
+:::

where the terms omitted have already been given. Taking the contraction of the fourth-order tensor

on the mean velocity gradients to obtain the form used in the Reynolds stress equations produces,

with q2 =< upup >,

Q
r

ij =2q
2 = 2[A1 +A2]Sij
+ [(A3 +A4 + 2A5)(bipSpj + bjpSpi) + 2A5�ij < bS >]
+ [(A3 �A4)(bipWpj + bjpWpi)]
+ [(A6 +A7 + 2A8)(b2ipSpj + b2

jp
Spi) + 2A8�ij < b2S >]

+ [(A6 �A7)(b2ipWpj + b2
jp
Wpi)]

+ 2[(A9 + A10)bipSpqbqj +A10bij < bS >]
+ [(A11 + A12 + 2A13)(bipSpqb

2
qj
+ bjpSpqb

2
qi
) + 2A13(b

2
ij
< bS > +bij < b2S >)]

+ [(A11 � A12)(bipWqpb
2
qj
+ bjpWqpb

2
qi
)]

Here the angle brackets represent the trace of the indicated quantity: eg. < bS >= bijSij and

that II = �1=2 < b2 >, III = 1=3 < b3 >. Note that the
Q

r

ij has zero trace because of

the continuity constraint, Xijjk = 0, requires A3 + A4 + 5A5 � II(A11 + A12 + 4A13) = 0 and

A6 + A7 + 5A8 + A9 + A10 = 0 It is possible to rewrite the higher order tensor bases in terms of

the lower order terms substantially simplifying the form of the model. The generalized Cayley-

Hamilton theorem is used to rewrite the expression in an irreducible tensor basis. Using the matrix

notation
bSb = �[b2S+ Sb2]+ < bS > b+ 1=2 < b2 > S+ < b2S > 1

bSb2 + b2Sb = �1=3 < b3 > S+ < b2S > b+ < bS > b2

the 2DMFI rapid-pressure correlation can be written more compactly as

Q
r

ij
=2q2 = [B3+ < b2 > B00

3+ < b3 > B000

3 ]Sij
+ B4[bipSpj + bjpSpi � 2=3 < bS > �ij ] + B000

4 < bS > [b2
ij
+ 2II=3�ij]

+ B5[bipWpj + bjpWpi] + [B6 < bS > +B000

4 < b2S >]bij
+ B7[b2ipSpj + b2

jp
Spi � 2=3 < b2S > �ij ]

+ B8[b2ipWpj + b2
jp
Wpi] +B9[bipWqpb

2
qj
+ bjpWqpb

2
qi
]
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where the values of the Bi in terms of the Ai are given in Appendix 1. The above representation

of the rapid-pressure correlation will be called the basic or uncalibrated model. The coe�cients,

Bi, appearing in the base 2DMFI model above come from �rst principles: they do not result from

any numerical optimization with experimental or numerical data. Comparisons to the FLT model,

Fu et al. (1987), shows that the two models have the same tensor structure containing the same

generators. The only di�erence is in the terms proportional to [bij ] and [b2
ij
+ 2II=3�ij], usually

identi�ed with the slow-pressure's contribution to the pressure-strain correlation and calibrated

accordingly, now re
ect a contribution from the rapid-pressure. Contraction of the irreducible form

of Xijkl on the mean velocity gradients has produced the bases [bij ] and [b2
ij
+ 2II=3�ij] in which

the coe�cients are functions of the invariants < bS > and < b2S > in addition to the dependence

on < b2 > and < b3 > appearing in the Ai. The two tensor bases, usually associated with the

slow-pressure correlation, arise as a consequence of starting with the two-point volume integral

and represent a contribution to the pressure-strain correlation whose structure is identical to the

slow-pressure models but whose genesis is in the rapid-pressure.

Speziale et al. (1991) have also written a general form for the pressure-strain covariance. It is linear

in the mean velocity gradients and nonlinear in the anisotropy tensor. Their expression contains

the same generators as the present model except for the cubic term [bWb2 � b2Wb]. Speziale

et al. (1991) use results from rational mechanics (cf. Smith (1971)) to expand in a functional

basis. The present strategy uses a polynomial basis for which the generator [bWb2 � b2Wb] is

not redundant, Spencer (1971). The tensor polynomial given above is irreducible and the basis is

optimal. Speziale et al. (1991) have shown, for planar 
ows, that the generators nonlinear in the

anisotropy tensor can be expressed in terms of generators linear in the anisotropy tensor. This fact

led to the very simple form of the SSG model, Speziale et al. (1991). This fact, from a rigorous

though not necessarily practical point of view, limits the model to planar 
ows. The results of

Speziale et al. (1991) can be used to recast the present model into its linear planar form. For

planar 
ows Speziale et al. (1991) has shown that

[b2
ip
Spj + b2

jp
Spi � 2=3 < b2S > �ij ] = �b33[bipSpj + bjpSpi � 2=3 < bS > �ij ]� 2=3(III=b33)Sij

[b2
ip
Wpj + b2

jp
Wpi] = �b33[bipWpj + bjpWpi]

from which it follows that

[bipWqpb
2
qj
+ bjpWqpb

2
qi
] = (II + b33b33)[bipWpj + bjpWpi]

and the planar form of the 2DMFI rapid-pressure model can be written as

Q
r

ij =2q
2 = (C3 � 2IIC 003 + 3IIIC 0003 � 2=3(III=b33)C7)[Sij]
+ (C4 � b33C7)[bipSpj + bjpSpi � 2=3 < bS > �ij ] + C0004 < bS > [b2

ij
+ 2II=3�ij]

+ (C5 � b33C8 + (II + b33b33)C9)[bipWpj + bjpWpi] + (C6 < bS > +C0004 < b2S >)[bij ]
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which has the same linear tensor bases as the quasi-linear SSG model. The form of the model

in planar 
ows is consistent with to the SSG model which is the topologically generic form of a

general class of models for the fourth order rapid-pressure tensor Xijkl. The coe�cients in the

model, however, are nonlinear functions of the invariants while in the SSG model, given below for

comparison,

Q
r

ij
= �(2C1"+ C�1P)[bij] + C2"[b

2
ij
+ 2II=3�ij] + (C3 � (�2II)1=2C�3)k[Sij ]

+ C4k[bipSpj + bjpSpi � 2=3 < bS > �ij ] + C5k[bipWpj + bjpWpi]

the Ci are numerical constants and one coe�cient in the [Sij ] term, in the rapid-pressure portion of

the model is nonlinear. The Ci in the SSGmodel are determined by a numerical optimization so that

the model reproduces as closely as possible: 1) the stationary state of the homogeneous shear and

2) maximizes the kinetic energy growth rate of the rotating homogeneous shear as close as possible

to the 
=S = 0:25 predicted by rapid distortion theory without introducing a Richardson number

similarity, Speziale and Mhuiris (1989), while insuring that the points of exchange of stability are

outside of those predicted by the linear theory of Bertoglio (1982).

In the return term of the SSG model the correction to the linear bij term arrived at more or

less intuitively by Speziale et al. (1991) is, to lowest order, vindicated by the present results.

Speziale et al. (1991) have altered the term linear in bij , usually associated with the slow-pressure

correlation, to include a term involving the mean 
ow, a term proportional to the production

P = �2 < uiuj > Ui;j : the usual C1"bij ! (C1"+C�1P)bij . The present analysis indicates that the

portion of the rapid-pressure contribution to the pressure-strain correlation, linear in bij , has the

form [B6 < bS > +B000

4 < b2S >]bij . Note that < bS > can be written in terms of the production

as < bS >= �P=q2. The present analysis suggests the possibility of adjusting the nonlinear return

term for mean velocity gradient e�ects in a similar way. In the present model the portion of the

rapid-pressure quadratic in the anisotropy tensor is B000

4 < bS > [b2
ij
+ 2II=3�ij] and therefore also

scales with the production.

Speziale et al. (1992) have re
ected on the ambiguity of the distinction between the rapid- and slow-

pressure contributions to the pressure-strain correlation. They have modeled the whole pressure-

strain correlation but whether to interpret their adjustments (as described in the previous para-

graph) as incorporating the e�ects of the mean strain on the return terms or as contributions of the

rapid-pressure to the total pressure-strain is not clear. Here, however, the distinction is clear. The

present analysis starts from the tensor polynomial representation for the rapid-pressure integral

and produces terms whose tensor structure is identical to that which are traditionally called the

slow-pressure. The other non-linear pressure-strain models, FLT or the SL model, Shih and Lumley

(1985), do not have terms in bij or b
2
ij
that can be similarly identi�ed.

The derivation of a rapid-pressure correlation satisfying all the limit states and valid away from the
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limit state, though mathematically rigorous, will not necessarily produce a model that performs

better than other models in 
ows for which latter models are calibrated. However, for the general

class of 
ows for which second-order models are suitable we are of the opinion that the satisfaction

of all mathematical constraints constitutes a necessary (though not su�cient) requirement to assure

the predictive capabilities in 
ows di�erent from those for which the models are calibrated. The

existence of several free parameters can then be used to calibrate the model to speci�c classes of


ows of computational interest. This tack is taken in the next section where the �xed points of the

modeled equation are matched to the �xed points of the homogeneous shear. In this way a model

for the class of 
ows in which the mean shear is the dominant production mechanism is created.

5. Calibrating the rapid-pressure correlation representation

The coe�cients, Bi, appearing in the 2DMFI model come from �rst principles: they do not result

from any calibration with experimental or numerical data. They represent the minimum number

of determined coe�cients necessary to satisfy the mathematical constraints on the rapid-pressure

correlation for a three-dimensional Reynolds stress. It, however, is not a unique representation:

there are an in�nity of solutions corresponding to di�erent values of the free parameters which, in

the basic model representation shown, have been set to zero. Computations have shown that the

predictive capabilities of the basic model are inadequate. The mathematics built into the model do

not capture the experimentally known stationary points of homogeneous shear. To compensate for

some of the approximations made in the mathematical development the model is modi�ed so that

the modeled evolution equations have the same asymptotic behavior as that observed: to the basic

model additional terms are added to insure that the model is consistent with an equilibrium state

of a particular benchmark turbulent �eld. This is done without sacri�cing any of the mathematical

principles built into the model. It, however, can not be done arbitrarily.

The strategy is to require asymptotic consistency with an equilibrium state. The modeled evolu-

tion equations are required to have the same �xed points as those observed in experiment. The

equilibrium constraint is used to obtain additional constraints equations to specify the free param-

eters. This is very similar to the strategy employed so far in that limit states are used to set model

coe�cients. Here, of course, the equilibrium state is much closer to those expected to be seen in


ows of engineering interest. The free parameters will now be called calibration coe�cients, Ac

i
,

and will be collectively denoted by X1

ijkl
appearing in the decomposition

Xijkl = X0

ijkl
+ FXF

ijkl
+ FX1

ijkl
:

X1

ijkl
represents the additional constant terms necessary to capture the stationary state. This form

is equivalent to assuming that the coe�cients in the tensor polynomial have the form Ai = A0
i
+

FAF

i
+ FAc

i
. The Ac

i
satisfy normalization and continuity constraints and the algebraic equations

describing the stationary state of a homogeneous shear. It is at this point that numerical or
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experimental data for the asymptotic values of the anisotropy tensor, the production to dissipation,

(P=")1, and the ratio of time scales, (Sk=")1, are necessary. The details of this strategy are now

given.

The Ac

i
satisfy the six equations given by the homogeneous form of normalization and continuity

constraints, X1

ijkk
= 0; X1

ijjk
= 0, which are valid for all states of the turbulence. Substituting in

the calibration coe�cients allows six Ac

i
, to be expressed in terms of seven free parameters,

Ac

1 = �(50Ac

8 + 12Ac

9 + 4Ac

10)II=15+ (Ac

11 +Ac

12 � 6A13)III=5
Ac

2 = (20Ac

8 + 3Ac

9 + Ac

10)II=15� (3Ac

11 + 3Ac

12 + 2A13)III=10
Ac

3 = �11=3Ac

5 + (Ac

11 + 3Ac

12 + 8Ac

13)II=3
Ac

4 = �4=3Ac

5 + 2(Ac

11 + 2Ac

13)II=3
Ac

6 = �1=3(11Ac

8 + 3Ac

9 +Ac

10)
Ac

7 = �2=3(2Ac

8 +Ac

10):

The seven parameters will be determined by asymptotic consistency with a particular equilibrium

state. At this point the rapid-pressure correlation model is fully general and it is possible to write

it in its �nal form, without specifying the calibration coe�cients, as

Q
r

ij =2q
2 = [C3 � 2IIC 003 + 3IIIC0003 ]Sij
+ C4[bipSpj + bjpSpi � 2=3 < bS > �ij ] + C0004 < bS > [b2

ij
+ 2II=3�ij]

+ C5[bipWpj + bjpWpi] + [C6 < bS > +C0004 < b2S >]bij
+ C7[b

2
ip
Spj + b2

jp
Spi � 2=3 < b2S > �ij ]

+ C8[b2ipWpj + b2
jp
Wpi] + C9[bipWqpb

2
qj
+ bjpWqpb

2
qi
]:

The calibration coe�cients, Ac

i
, have been added to the base model coe�cients, Bi, to obtain the

�nal model coe�cients Ci:

C3 = B3 � 2F (10Ac

8 + 3Ac

9 + Ac

10)II=5� F (A
c

11 +Ac

12 + 14Ac

13))III=5
C003 = B00

3 + F (Ac

9 +Ac

10)
C0003 = B000

3 � 1=3F (Ac

11 + Ac

12 + 2Ac

13)
C4 = B4 + F (�3Ac

5 + II(Ac

11+Ac

12 + 4Ac

13))
C0004 = B000

4 + F (Ac

11 + Ac

12 + 4Ac

13)
C5 = B5 + F (�7=3Ac

5 + (�Ac

11 + 3Ac

12 + 4Ac

13)II=3)
C6 = B6 + F (2Ac

9 + 4Ac

10)
C7 = B7 � 3F (Ac

8 +Ac

9 + Ac

10)
C8 = B8 � 1=3F (7Ac

8 + 3Ac

9 � Ac

10)
C9 = B9 + F (Ac

11 �A
c

12)

Note that the traces can be written in terms of the production < bS >= �P=q2 and < b2S >=

1=2b33P=q2; in planar 
ow < bS >= �2b12S and < b2S >= �b12b33P=q
2.

The calibration coe�cient Ac

5 involves adjustments to the generators [bS + Sb � 2=3 < bS > 1]

and [bW �Wb] which are linear in the anisotropy tensor. Numerical experiments have indicated

that it is important in establishing the levels of the normal components of the Reynolds stresses.

Combinations of Ac

8; A
c

9 and A
c

10 a�ect the generators quadratic in the anisotropy tensor, [b2S +

b2S� 2=3 < b2S > 1] and [b2W�Wb2] and to a very small degree the S term. Combinations of
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only Ac

9
and Ac

10
can be used to control the contribution to

Q
r proportional to b and S. Experience

with the FLT model, Fu et al. (1987) indicates that the cubic term [bWb2 � b2Wb] involving

the rotation tensor is important in controlling the relative level of the normal components of the

Reynolds stress in situations with rotation. This suggests that the calibration coe�cients Ac

11; A
c

12

and Ac

13 are important. The combination of calibration coe�cients Ac

11 � Ac

12 controls tensor

products like [bWb2�b2Wb] and combinations of termsAc

11; A
c

12 and A
c

13 control the contributions

of the b2 and S.

The existence of the free parameters allows the model to be calibrated to a speci�c class of 
ows

of computational interest. For example, in a buoyant 
ow one might evaluate the �xed points

using the experiments of the homogeneous shear in a constant mean temperature gradient thus

producing a model suitable for a class of strati�ed 
ows of geophysical interest. This calibration

would, of course, involve the model for the rapid-pressure correlation appearing in the heat 
ux

equation. For many engineering problems the primary production mechanism is the mean shear

and capturing the �xed points of the homogeneous shear in the modeled equations will make the

model suitable for a wide class of 
ows. At this point one could also consider using the exact

results of rapid distortion theory to obtain values for the calibration coe�cients. This, however, is

inconsistent with the equilibrium hypothesis underlying the local approximation to the constitutive

relation invoked for the rapid-pressure correlation integral. Moreover the rapid distortion problem

is linear admitting a superposability that is not possible in the context of nonlinear second-order

closures. The homogeneous shear structural equilibrium will be used to �x the representation for

the rapid-pressure correlation.

The �xed points of the homogeneous shear are now built into the model by specifying the calibration

coe�cients. The modeled evolution equations for the homogeneous turbulence in a mean velocity

gradient, are

D=Dt < uiuj >= �2�ikp < upuj > 
k � 2�jkp < upui > 
k� < uiup > Uj ;p� < ujup > Ui;p
+
Q

r

ij
� C1"bij + C2"[b2ij + 2II�ij=3]� 2=3"�ij

D=Dt " = �(C"1 < uiuj > Ui;j + C"2") "=k

assuming local isotropy for the dissipation. The terms �C1"bij + C2"[b2ij + 2II=3�ij] represent the

return to isotropy pressure correlation. Using < uiuj >= q2(bij + 1=3�ij) the equations for the

anisotropy are

D=Dt bij = �2�ikpbpj
k � 2�jkpbpi
k � [bipUj ;p+bjpUi;p�2=3�ij < bS >]
�2=3Sij + 2bij < bS > +

Q
r

ij
=q2 � (C1 � 2)bij"=q2 + C2[b2ij + 2II=3�ij]"=q2:

The mean strain and rotation tensors are Sij = 1=2S�(�i1�j2 + �i2�j1) and Wij = 1=2W �(�i1�j2 �

�i2�j1), where, S = U1;2= S� = W �. Setting the D=Dt bij = 0 produces three algebraic equations.
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Inserting the experimentally determined asymptotic values of bij and Sk=" produces three addi-

tional constraints leaving four of the seven Ac

i
as free parameters. The data from the experiments

of Tavoularis and Corrsin (1981), Champagne, Harris and Corrsin (1970), Tavoularis and Karnik

(1989), and the DNS of Rogers et al. (1986) are summarized in the Table 1.

TC CHC TK.A TK.C TK.D TK.G TK.J TK.K DNS

b111 0.197 0.137 0.217 0.257 0.197 0.157 0.157 0.147 0.215

b112 -0.14 -0.165 -0.165 -0.165 -0.17 -0.148 -0.154 -0.149 -0.158

b122 -0.143 -0.083 -0.133 -0.143 -0.133 -0.113 -0.103 -0.093 -0.153

b133 -0.053 -0.053 -0.083 -0.113 -0.063 -0.043 -0.053 -0.053 -0.062

(P=")1 1.75 1.0 1.38 1.37 1.64 1.33 1.45 1.37 1.80

(SK=")1 6.25 3.03 4.2 4.15 4.82 4.5 4.71 4.60 5.7

Table 1. Data for the homogeneous shear 
ow.

There is considerable scatter in the data due to the technique used to generate the turbulence,

individual wind tunnels in which the di�erent experiments were done, and experimental error. Not

all the data, as has been quali�ed in the references from which the data is drawn, represent the

asymptotic state. The following �xed point values are taken to be representative: b111 = 0:203,

b112 = �0:156, b122 = �0:143, b133 = �0:06, (Sk=")1 = 5:54, (P=")1 = 1:73. They are obtained by a

simple average of the data of TC, TK.D and the DNS. These three cases are chosen because they

have the highest values of of the nondimensional time (SK=")1 corresponding to the 
ows that are

furthest in their development to the asymptotic state. The values of the invariants corresponding to

these values of the anisotropy tensor are: II1 = �0:057; III1 = 0:0032; F1 = 0:573. Substituting

these asymptotic values into the �xed point equations, D=Dt bij = 0, reduces the number of free

parameters from seven to four.

Ac

5 = �0:29� 0:06(Ac

10�A
c

8)
Ac

11 = �3:6 + 5Ac

10 � 2Ac

13 � 12:7Ac

8� 3:8Ac

9

Ac

12 = �24:5� 44:2Ac

10� 2Ac

13 + 29Ac

8 � 8Ac

9

This set of constraint equations is dependent on the model for the return to isotropy pressure. For

simplicity the the nonlinear return coe�cient has been set to zero, C2 = 0, and the well accepted

value, C11 = 3:4, has been chosen. There are still four free parameters. The following values of the

four free parameters are chosen: Ac

8 = 0:8; Ac

9 = �1:0; Ac

10 = 0:01; Ac

13 = 0. The undetermined free

parameters have been set by matching the values of the anisotropy for the log layer. The procedure

is outlined in more detail in Appendix 1.

6. Computations and comparisons in homogeneous turbulence

The 2DMFI model falls into the same class of representations as the FLT and SL models: they all

use nonlinear terms and invoke some form of realizability constraint to evaluate the coe�cients. For

this reason the 2DMFI model will be compared primarily to the nonlinear SL and FLT models. For
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completeness and because it appears to be a very successful model for the planar 
ows, computations

with the quasi-linear SSG model are also shown. The SSG model is linear in the anisotropy tensor

though nonlinear in that the scalar coe�cients are functions of the invariants of the the anisotropy

tensor. It should, however, be kept in mind that the SSG model satis�es realizability for the kinetic

energy and not for the individual Reynolds stresses and is therefore in another class of models. This

issue is more fully explored in a subsequent section. Results are not compared to the LRR model

as, in concordance with the observations of Speziale et al. (1991), the SSG model is viewed as an

updated optimized LRR model.

In all the calculations with the 2DMFI model a simple linear Rotta type model for the slow pressure

correlation will be used. This corresponds to C2 = 0 in the canonical form given above and is

consistent with the present calibration to the homogeneous shear. For the linear return coe�cient

a simple expression, C1 = 2 � 31IIF 1=2, is used. This satis�es the isotropic limit, C1 = 2:0, and

is consistent with the assumed value for the asymptotic homogeneous shear, C11 = 3:4. The form

chosen is consistent with a weak form of realizability and the recent results of Speziale et al. (1993)

regarding the rate of disappearance of the rapid-pressure correlation relative to the return pressure

correlation as the realizability limit is approached.

The values used for the constants in the dissipation equation are: C"1 = 1:44, C"2 = 1:83. Note

that this corresponds to a single universal �xed point (P=")1 = 1:88 independent of rotation.

The single �xed point is a well-known de�ciency common to all the present forms of the modeled

dissipation equations.

Case 1: Homogeneous shear

The calibrated model is now used to compute the time evolution of the homogeneous shear 
ow. The

mean strain and rotation tensors are Sij = 1=2S�(�i1�j2+�i2�j1) and Wij = 1=2W �(�i1�j2��i2�j1),

where, S = U1;2= S� = W �. In Figure 1 the time evolution of the turbulence energy is compared

to the LES of Bardina et al. (1983), and the three models FLT, SL and SSG. A similar monotonic

behavior is found for other statistics, b12; b11; II in the 
ow and, as they do not constitute new or

di�erent information, are not shown. In general, starting from physically realistic initial conditions,

the 
ow attains its asymptotic state rapidly and monotonically. The asymptotic states which the

di�erent models attain are given in the accompanying table. The column labeled experimental data

is an average of the three cases TC, DNS and TK.D.
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Equilibrium 2DMFI SL FLT SSG Experimental
Values Model Model Model Model Data

b111 0.209 0.202 0.208 0.219 0.203

b112 -0.155 -0.080 -0.146 -0.164 -0.156

b122 -0.148 -0.195 -0.144 -0.146 -0.143

b133 -0.061 0.007 -0.064 -0.073 -0.06

(P=")1 1.88 3.42 1.99 1.88 1.73

(SK=")1 6.08 21.35 6.84 5.76 5.54

Table 2. Comparison of the model predictions for the equilibrium values in homogeneous shear 
ow

(P=" = 1.88) with the experimental data given in Tavoularis and Karnik (1989).

Note that the di�erent (P=")1 attained are functions of the di�erent C"1 and C"2 used in the models.

The present form of the dissipation equation insures that the quantity (P=")1 = 1:88 regardless

of initial conditions for all Sk=". This is a shortcoming of the modeled dissipation equation and

shows up in a larger b11 than the 
ow for which it was calibrated in which (P=")1 = 1:73

Case 2: The equilibrium wall layer

Another simple but important test cases is whether the model can capture the stationary state of

the log-layer in the channel 
ow. The homogeneous shear and the log-layer are similar in that they

achieve, to a suitable approximation, an equilibrium state. Abid and Speziale (1993) have discussed

the relevance of this test case and noted the inability of most rapid-pressure closures to perform

successfully in the log-layer. Our results are in agreement with their contention that a model which

is asymptotically consistent with the stationary states of the homogeneous shear will also do well

in the log-layer. The models are compared to the DNS of the channel 
ow of Kim (1993) which

is an update of the simulations reported in Kim et al. (1987). The data presented represent an

average of the values of the anisotropy in the region 70 � y+ � 100 outside the viscous sublayer.

Equilibrium 2DMFI SL FLT SSG DNS Experimental
Values Model Model Model Model Data Data

b111 0.180 0.079 0.141 0.201 0.180 0.22

b112 -0.141 -0.116 -0.162 -0.160 -0.134 -0.16

b122 -0.142 -0.082 -0.099 -0.127 -0.140 -0.143

b133 -0.039 0.003 -0.042 -0.074 -0.040 -0.06

(P=")1 1.0 1.0 1.0 1.0 1.0 1.0

(SK=")1 3.55 4.30 3.09 3.12 3.73 3.1

Table 3. Comparison of the model predictions for the equilibrium values in the log-layer of turbulent

channel 
ow (P=" = 1) with the DNS data of Kim (1993) and the data of Laufer (1951) given in

Abid and Speziale (1993).

Case 3: Homogeneous shear with rotation

The present test case, the homogeneous shear with rotation, and the next test case, the homogeneous
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shear with streamline curvature, are important test cases. In both these cases additional forces,

which stabilize or destabilize the 
ow, are present. These e�ects appear in the evolution equations as

additional production mechanisms for the Reynolds stresses. In the case of rotation the production

terms in the evolution equation for the turbulence kinetic energy do not directly depend on the

rotation: the turbulence energy production depends on the rotation only through the o�-diagonal

components of the Reynolds stress while in the case of streamline curvature the production terms

in the evolution equation of the turbulence kinetic energy do directly dependent on the curvature.

These two cases are important test cases not only because 1) the models have not been calibrated for

them but also because 2) the model will have to predict both the stabilization and the destabilization

of the turbulence and 3) the critical values of the governing parameters which demarcate the regions

of 
ow stabilization from 
ow destabilization.

For 
ows in the rotating coordinate system the Coriolis terms must be carried and Wij appearing

in
Q

r

ij
must be replaced by the total rotation tensorWij+�jik
k. Thus in the rapid-pressure model

W � = S(1� 2
=S).

Figure 2b-2e show how the models perform in rotating shear for rotation to shear ratios 
=S =

0; 1=4; 1=2 compared to the LES data of Bardina et al. (1983) in Figure 2a. In general, all the

models are able to capture both 
ow stabilization for some A > 
=S > B and 
ow destabilization

for some A � 
=S � B. The points A and B represent the points of neutral stability on a

bifurcation diagram in the phase plane ("=Sk)1 and (
=S)1. All of the models have a bifurcation

diagram of the same general form, Speziale and Mhuiris (1989), indicating a stabilization of the


ow outside of some region of approximate size 0 � 
=S � 0:5, predicted by the linear rapid

distortion theory of Bertoglio (1982). The most important facts concerning the di�erent models

for the homogeneous rotating shear can be summarized by indicating the unstable regions in which

the models predict a non-trivial equilibrium ("=Sk)1.

SSG : �0:09 � 
=S � 0:53
RDT : 0:00 � 
=S � 0:50

2DMFI : �0:063 � 
=S � 0:502
SL : �0:14 � 
=S � 0:40

FLT : �0:11 � 
=S � 0:39

Near the point of linear neutral stability 
=S = 1=2 both the SL and the FLT models predict a

premature restabilization at values of 
=S 20% and 22% lower than that predicted by the linear

theory. The 2DMFI model is within 4% of the linear prediction.

None of the models tested, linear or nonlinear, captures the point of maximum kinetic energy

growth at (
=S)max = 0:25. To do so would mean that the equations would exhibit a Richardson

number similarity which, as Speziale and Mhuiris (1989) have shown, is not admitted by the Navier

Stokes equations. The two models that come closest to (
=S)max = 0:25 are SSG at 
=S = 0:22,
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which was calibrated using this fact, and 2DMFI at 
=S = 0:2 which was not calibrated using

any rotating 
ows. The current modeled dissipation equations predict a (P=")1 � �2b12Sk=" =

(C"2 � 1)=(C"1 � 1) = const:, where the constant is model dependent but independent of rotation

rate. The constant attains the value for the equilibrium homogeneous shear for arbitrary rotation

rate, a fact which is not consistent with observation. In a 
ow that is stabilized by rotation, say


=S = 1, production must be less than dissipation for the equilibrium state to be reached. The

dissipation equation cannot be used for calibration in rotating 
ows without compromising the

model when a dissipation equation capable of predicting the stationary values of (P=")1 = f(
=S)

becomes available.

Case 4: Homogeneous shear with curvature

For the homogeneous shear with streamline curvature the mean strain and rotation tensors are Sij =

1=2S�(�i1�j2+�i2�j1) and Wij = 1=2W �(�i1�j2��i2�j1) where S
� = S(1�stb) and W � = S(1+stb)

where stb = (Uc=Rc)=S is the stability parameter. The geometry for the curved homogeneous shear

follows that of Holloway and Tavoularis (1992): Rc is the radius of curvature of the 
ow and Uc

is the axial velocity at the centerline and the crosstream gradient of the axial velocity is the shear

U1;2= S. The stability parameter has been renamed stb so as not to confuse it with S which is

traditionally used for the mean shear. The kinetic energy growth rate is suppressed, relative to the

homogeneous shear, for stb > 0 and increased for stb < 0, while for stb > 0:05 the experimental

data indicates a relaminarization.

Figure 3 compares the model results to the experimental data for b12 versus stb. The plot has been

generated by computing the 
ow from the beginning of the straight section of the wind tunnel to a

value of St = 10 which corresponds to the end of the curved section. The initial conditions on the

second order moments are given by the experimental data. The initial condition on the dissipation

rate is determined by matching to the kinetic energy growth rate at the beginning of the straight

section.

The di�erent models all capture the trend in the stabilization/destabilization with respect to the

stability parameter. The primary di�erence in the predictions of the di�erent models seems related

to their ability to capture the homogeneous shear at stb = 0. The results of the di�erent models

would be in more agreement for negative and small positive values of stb if they predicted the same

results for the homogeneous shear.

The bifurcation diagram for the second order models, in Figure 4, was generated by letting the

solution procedure go to its asymptotic state. There is a critical value of stbc at which the stabi-

lizing e�ects of curvature begins to causes a negative kinetic energy growth rate, which ultimately
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relaminarizes the 
ow. The critical values, stbc , predicted by the di�erent models, are

H&T : stbc = 0:05
2DMFI : stbc = 0:067

FLT : stbc = 0:075
SSG : stbc = 0:10
SL : stbc = 0:105

where H&T is from the experimental data of Holloway and Tavoularis (1991). There is a consistent

trend for the SSG, 2DMFI and FLT models, when compared to the critical values for the rotating

shear: the higher (
=S)c for stabilization of the 
ow correspond to higher stbc. The SL model has

small but nonzero "=Sk over the range 0:25 < stb < stbc .

Case 5: Two and three-dimensional strains

The rapid pressure model is used to compute three strain 
ows: the plane strain and the axisym-

metric contraction and expansion. These 
ows are another test case as the rapid pressure model

has not used these 
ows to set the calibration coe�cients. The results are compared to the direct

numerical simulations of Lee and Reynolds (1985). Because the simulations are conducted at low

Reynolds number the anisotropies are expected to be somewhat higher than those of a fully de-

veloped turbuelence. However the use of the physical experiments conducted at higher Reynolds

number is also somewhat tenuous as the initial conditions on "=Sk, as has been pointed out by

Speziale et al. (1991), are not known with certainty. The same test cases as those given in Speziale

et al. (1991) are used. Our results are also compared to the SSG model as it appears to be the

current model that gives the best results. The evolution of the kinetic energy for these 
ows is not

presented; the results for the models are in very good agreement with the data and each other and

do not de�nitively distinguish between the various models.

Figure 5 shows the evolution of the anisotropy for the plane strain, Sij = S�(�i1�j1 � �i2�j2)

starting from isotropic initial conditions. Figure 6 and 7 shows the evolution of the anisotropy for

the axisymmetric contraction and expansion. Here for the contraction Sij = S�(�i1�j1�1=2�i2�j2�

1=2�i3�j3). For the expansion S is replacesd with �S. Results for all the plane and axisymmetric

strain 
ows capture the trends nicely.

8. General discussion

The constraints of geostrophy, realizability, joint-realizability, normalization and continuity have

been used to create the 2DMFI model. The use of a realizability type constraint to obtain values

for unknown coe�cients in the models, in the case of the strong form of realizability, has been

criticized on the grounds that one should not use an extreme state to set the coe�cients in an

equilibrium model. This certainly is the case in any rigorous interpretation of the statement -

requiring all the scales of the motion to satisfy the indicated limit. However, from the point of

view of a useful engineering approximation, it should be kept in mind that < uiuj > represents
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an integral over all scales of the motion: from the production scales at �` � 1 and larger to the

dissipation scales �� � 1. In a turbulence with a ��5=3 inertial subrange in which there is enough

of a separation of scales for a second-order simulation to be useful, say at least Re` � 104, the ratio

between the dissipative and the energy containing length scales is �=` � Re
�3=4

`
� 1000 and the


ow scales range over 0 < �` < 1000. However, approximately 85% of the energy of the motion is

contained in the �rst decade �` < 10: the major contribution to < uiuj > is from the scales of the

motion greater than one tenth of the production scales, for which �`` � 1. If only the largest 1%

of the 
ow scales, i.e. from 0 < �` < 10, begins to lose an eigenvalue of the Reynolds stress tensor,

through some dynamical or kinematical agency, < uiuj > begins to approach the realizable limit.

Part of the reluctance to accept the second-order modeling technique is that turbulence simulations

of complex inhomogeneous 
ows with multi-dimensional mean 
ows which may have body forces,

streamline curvature or rotational e�ects, are extremely di�cult to compute. >From a strictly

practical point of view - computability - incorporating the realizability constraints into the models

for unknown correlations has some very tangible and bene�cial e�ects. During the convergence to

a solution, from more or less arbitrary initial conditions, the iteration will be plagued with negative

normal stresses and correlation coe�cients larger than one. When this occurrs the solution is clipped

and the solution procedure restarted from the new clipped initial conditions. The frequency of this

clipping and resetting procedure is substantially reduced (in simple 
ows even eliminated) when

using realizable models.

How one gets to a realizable turbulence is not an issue in problems with steady states, as long as

the �nal state is realizable. This, however, is not the case for problems that are unsteady. For time-

varying 
ows, varying on the integral time-scale, the quasi-steady problem for which the second-

order methods are still suitable - this issue becomes serious. Our experience with the Reynolds

averaging procedure, in buoyantly driven elliptic 
ows with rotation, indicates that it acts as a low-

pass �lter: the rapidly 
uctuating instantaneous dynamics are subsumed by the averaging procedure

leaving the slow-time large-scale parts of the 
ow, evolving on time scales commmensurate with the

integral time scale, to be captured by the computation. If the simulation is to re
ect the physics

of the time evolution of the 
ow, it must stay realizable. Clearly excessive realizability violations,

requiring a clipping and resetting of the solution, which produces a solution that never evolves far

from the transient associated with the most recent clipped initial condition, are not acceptable.

In such 
ows, satisfying the realizability constraint has very important consequences regarding the

validity of the time evolution of the 
ow.

The coe�cients of the tensor polynomials used to represent an unknown correlation in a constitutive

relation are, according to the theory, non-constant functions of the invariants of the independent

tensors and thus depend on the state of the turbulence. These coe�cients, in "realizable" turbulence
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models using some form of the strong realizability constraint, are obtained by requiring that the

rate of change of a positive semi-de�nite quantity be zero when some limit state is achieved. The

coe�cients so obtained are constants and are strictly valid only at the limit state. To the limit state

value of the coe�cients, which are regarded as a zeroeth order approximation to the coe�cient in

a general 
ow, ad hoc corrections are then added. These corrections, which vanish as the limit

state is approached, require some sort of numerical optimization with well known simple 
ows.

This summarizes the methodology used in other "realizable" turbulence models. In the linear SSG

model the coe�cients are, for the most part, constants that are also set by matching to a limit state.

In the case of the SSG model the structural equilibrium limit is used to set the constants in the

model. This is a much closer approximation to the turbulence expected to be seen in engineering

problems. The constants in the SSG model may be viewed as the values the nonconstant coe�cients

have near the equilibrium state.

In the present method the realizability principles are used to obtain non-constant values of the

coe�cients in the constitutive relations that are valid for all states of the mechanical turbulence.

Recall that the basic form of the rapid-pressure model is comprised of two parts X0

ijkl
and FXF

ijkl
,

the "o�-realizability" correction. X0

ijkl
satis�es simultaneously the �ve constraints - geostrophy,

realizability, joint-realizability, normalization and continuity, while FXF

ijkl
, also obtained analyt-

ically, satis�es the substantially less extreme joint-realizability as well as the homogeneous form

of the normalization and continuity constraints. Thus, although the model is consistent with the

realizable limit state, the values of the model coe�cients are not the values the coe�cients have at

the limit state. An extreme state of the 
ow has only been used to set the coe�cients in the X0
ijkl

part of the model - the additional FXF

ijkl
terms are, for the mechanical turbulence, fully general.

It is to this basic model, valid for all states of turbulence not just at the realizability limit, that

one adds the FX1

ijkl
term that is necessary to obtain the equilibrium values in the 
ows evolution

from arbitrary initial conditions. The requirement of asymptotic consistency with an equilibrium

state, �rst used by Speziale et al. (1991), is the single most important and consistent physical

requirement one can impose. Second-order closure methodology is built around the assumption

that there is, to a suitable approximation, for the class of 
ows to which second-order methods

are appropriate, a equilibrium state and in the absence of disturbing forces the 
ow relaxes to

that state on a time scale similar to the eddy turnover time. It is precisely this phenomenological

behavior that is built into the model by requiring the �xed points of the modeled equations to be

consistent with those obtained from experiment. The assumption that allows the parameterization

of the two-point correlation as a local function of the anisotropy tensor, Xijkl = Xijkl(bij), is such

an equilibrium assumption.

The penalty paid for these additional features associated with the satisfaction of the mathematical
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constraints is a more complex model. It should, however, be pointed out that the present 2DMFI

model has the same tensor basis as the FLT model and is therefore no more complex except for

the expressions for the nonconstant coe�cients. Moreover, the penalty is slight in the light of

the reduction of the computational di�culties found during the calculation of quasi-steady time

evolving 
ows with this representation for the rapid-pressure. The model, along with several other

models, has been used to compute inhomogeneous buoyancy driven rotating 
ows that occur in

the Czochralski crystal growth melt in which the Reynolds stress are three-dimensional, Ristorcelli

and Lumley (1991a, 1993), Ristorcelli (1991). In computing these time varying 
ows it was found

that the present 2DMFI model produced far fewer realizability violations during the course of the


ows evolution. For a quasi-steady 
ow this is a crucial point: every time realizability is violated

the solution is reset and the solution never evolves past the transients associated with reseting the

initial conditions. Such a computation cannot be expected to re
ect an ensemble average of the

original system.

9. Suggestions for future work

In the e�ort to produce a representation for the rapid-pressure correlation valid for the class of


ows to which second-order modeling is suitable, some shortcomings in the data on homogeneous

"building block" 
ows have become apparent. Though the homogeneous shear seems reasonably

well-documented it is not clear that the asymptotic states have been reached in some of the exper-

iments. Moreover the discrepancy between the high values of b111 obtained in the DNS versus those

seen in the laboratory data has not been explained. Additional work expanding on the notion of

two classes of 
ows, according to Tavoularis and Karnik (1989), and therefore the possibility of two

equilibrium states, merits investigation.

For the homogeneous shear with rotation, a very basic 
ow, there doesn't seem to be substantial

data, LES, DNS or experimental de�nitively describing its stationary states. At the very least an

assessment of the bifurcation diagram ("=Sk)1 versus (
=S)1 predicted by the linear theory would

be useful. Also the equilibrium values (P=")1 would be useful for further developments regarding

the dissipation equation's dependence on rotation. This may remedy the under-prediction of the

kinetic energy growth rates as a function of 
=S for all the models. The present class of dissipation

equations predicts an asymptotic state in which (P=")
1
is a model dependent constant, which for

all rotation rates has the same value that it does in the asymptotic shear. Had the stationary

values of the anisotropy tensor and (P=")
1
and ("=Sk)

1
been available application of the present

methodology would have produced a set of modeled evolution equations whose �xed points matched

to the �xed points of the rotating shear, independent of the de�ciencies in the dissipation equation.

The present rapid-pressure model is expected to distinguish itself in complex three-dimensional


ows. For the planar 
ows for which test cases exist the model out-performs the nonlinear models
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using realizability type constraints. It is only moderately better than the topologically generic

form of the SSG model suitable for simple planar 
ows. It is unfortunate that there does not exist

any suitable DNS or LES of 
ows in which the presence of a body force causes the larger scales

of the motion to become quasi-two-dimensional. Such a test case would help further establish the

utility of incorporating some of the more complex physics into the structure of the model as well

as perhaps pointing out the potential de�ciencies of models developed using two-dimensional mean


ows.

10. Summary and Conclusions

A new representation for the rapid-pressure strain correlation with a minimum of ad hoc constants

has been devised. The rapid-pressure model produces the proper behavior in �ve di�erent limits:

1) the geostrophic limit in which the eigenvalue of the Reynolds stress tensor, < uiuj >, along the

axis of rotation vanishes,

2) the realizable limit in which an arbitrary eigenvalue of the Reynolds stress vanishes,

3) the joint-realizable limit in which an eigenvalue of < �� >< uiuj > � < �ui >< �uj > vanishes,

4) the isotropic limit in which the anisotropy tensor, bij = 0,

5) the asymptotic limit of a structural equilibrium in which D=Dt bij = 0.

The model has the general form

Xijkl = X0

ijkl
+ FXF

ijkl
+ FX1

ijkl

where the Xijkl are polynomials in the anisotropy tensor. X0

ijkl
satis�es the �ve constraints: the

limit states of geostrophy, realizability, joint-realizability, and the integral constraints of continuity

and normalization. XF

ijkl
satis�es the three constraints of joint-realizability, continuity and normal-

ization. Both X0

ijkl
and FXF

ijkl
are obtained analytically: they represent the simplest analytical

expressions that are capable of satisfying all the mathematical constraints. X1

ijkl
is obtained by

requiring asymptotic consistency with the structural equilibrium state for homogeneous shear. Ex-

perimental data is required to determine X1

ijkl
. The stationary values of the anisotropy tensor, b1

ij
,

and (P=")1 and ("=Sk)1 are inserted into the modeled evolution equations to obtain the structural

equilibrium component of the rapid-pressure, X1

ijkl
. This insures that the �xed points of the mod-

eled equations match the experimentally determined �xed points. This process has been carried

out for the homogeneous shear producing a model that should be accurate for three-dimensional

mean 
ows in which the mean shear is the predominant production mechanism.

Several points regarding the 2DMFI model merit mention:

1) All the coe�cients, Ai, in the X0

ijkl
+ FXF

ijkl
portion of the model are obtained from �rst

principles and are valid for all states of the mechanical turbulence. They take on their values at
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the limit states only when the limit states are achieved unlike other models.

2) The present form of the model is consistent with the stationary state of homogeneous shear. This

insures that in the absence of any disturbing forces, the predicted 
ow will relax to the equilibrium

state.

3) The model is at present the only model which is consistent with predictions of the Taylor-

Proudman theorem assuring that the modeled equations are frame-indi�erent when the components

of the Reynolds stress along the axis of rotation vanish. This frame invariance is the most notable

feature of the model and is expected to be important for the computation of engineering and

geophysical 
ows in which body forces play an important role. In meteorological 
ows the present

2DMFI rapid-pressure correlation is consistent with the geostrophic limit atmosphere attains above

the planetary boundary layer. As such the model will be relevant to the computation of mesoscale

meteorological 
ows.

It is expected that the satisfaction of the 2DMFI principle will be important in three-dimensional


ows in which the largest scales of the motion are two-dimensionalized by body forces or kinematic

constraints. These 
ows include: 1) turbulence in which a strong stable strati�cation suppresses

the vertical component of the velocity �eld; 2) turbulence in the 
ows a�ected by magnetic �elds

3) turbulence in
uenced by rotation such as those in crystal growth processes or occurring in tor-

nadoes, swirl combustors and turbines; 4) turbulence in
uenced by Coriolis forces in which the

largest scales of the 
ow undergo a Taylor-Proudman reorganization (Ro < 2) as might occur in

large scale geophysical 
ows; 5) turbulence near a free surface at which one of the components of

the 
uctuating velocity is suppressed and the mean 
ow is two-dimensional; 6) the environmen-

tally important shallow water free shear 
ows as the shallow water jet associated with waste heat

exchangers, near-shore pollution dispersal, tidal estuary 
ows, and mixing associated with thermal

and salinity in
ows in lakes and rivers. However, until suitable data bases, DNS or LES, of these

complex 
ows with body forces become available the full potential of a rapid-pressure model built

from �rst principles in three-dimensional 
ows can not be veri�ed. The present model does however

reproduce the experimental data at least as well as the currently available models for a wide class

of two dimensional 
ows.
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Appendix 1: A synopsis of the �nal rapid-pressure correlation representation

For convenience and clarity the �nal form of the model is summarized here. The general �nal form

of the model is:
Q

r

ij
=2q2 = [C3 � 2IIC 003 + 3IIIC0003 ]Sij

+ C4[bipSpj + bjpSpi � 2=3 < bS > �ij ] + C0004 < bS > [b2
ij
+ 2II=3�ij]

+ C5[bipWpj + bjpWpi] + [C6 < bS > +C0004 < b2S >]bij
+ C7[b

2
ip
Spj + b2

jp
Spi � 2=3 < b2S > �ij ]

+ C8[b
2
ip
Wpj + b2

jp
Wpi] + C9[bipWqpb

2
qj
+ bjpWqpb

2
qi
]:

For 
ows in rotating coordinate systems,Wij appearing in
Q

r

ij
must be replaced by the total rotation

tensor Wij + �jik
k. The coe�cients Ci are given by a sum of the basic model coe�cients, Bi,

which come from �rst principles, and the calibration coe�cients Ac

i
. The basic model coe�cients

are related to the coe�cients Ai in the fourth order tensor polynomial expression by

B3 = 2(A1 + A2) = (2=27)[41+ 42II � 0:1F (221+ 420II)]=IId
B00

3 = A9 +A10 = �(14=3)(1 + 3II)=IId+ 0:6F=(1+ 3II)
B000

3 = �1=3(A11 +A12 + 2A13) = (55 + 84II)=3IId
B4 = A3 +A4 + 2A5 = 3=IId � 0:9F=(1+ 3II)
B000

4 = A11 +A12 + 4A13 = �9=IId
B5 = A3 �A4 = �(1=30)(10+ 21F )=(1 + 3II)
B6 = 2A9 + 4A10 = �18II=IId+ 3F=(1 + 3II)
B7 = A6 +A7 + 2A8 � 2A9 � 2A10 = �9=IId � 1:8F=(1+ 3II)
B8 = A6 �A7 = (1=5)(3F � 5)=(1+ 3II)
B9 = A11 �A12 = �3=(1 + 3II)

The Ai are given in Appendix 3. The Ci, which re
ects the application of the additional constraint,

asymptotic consistency with an equilibrium state, are obtained from the Bi by Ci = Bi + FAc

i
.

They are given by

C3 = B3 � 2F (10Ac

8 + 3Ac

9 + Ac

10)II=5� F (A
c

11 +Ac

12 + 14Ac

13))III=5
C003 = B00

3 + F (Ac

9 +Ac

10)
C0003 = B000

3 � 1=3F (Ac

11 + Ac

12 + 2Ac

13)
C4 = B4 + F (�3Ac

5 + II(Ac

11+Ac

12 + 4Ac

13))
C0004 = B000

4 + F (Ac

11 + Ac

12 + 4Ac

13)
C5 = B5 + F (�7=3Ac

5 + (�Ac

11 + 3Ac

12 + 4Ac

13)II=3)
C6 = B6 + F (2Ac

9 + 4Ac

10)
C7 = B7 � 3F (Ac

8 +Ac

9 + Ac

10)
C8 = B8 � 1=3F (7Ac

8 + 3Ac

9 � Ac

10)
C9 = B9 + F (Ac

11 �A
c

12)

where the Ac

i
are expressed in terms of the seven free parameters Ac

i
f5; 8� 13g. Without further

specifying the calibration coe�cients, Ac

i
, the above rapid-pressure model is general, suitable for the


ows for which second-order modeling is suitable. Calibration to a particular archetypal 
ow, by

matching the �xed points of the modeled evolution equations with experimentally determined �xed

points, will result in a model suitable for diverse 
ows within that class of 
ows. For a 
ow in which
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the dominant production mechanism is associated with the mean shear the hommogeneous shear

is used to set the model coe�cients. Asymptotic consistency with the homogeneous equilibrium

shear and a linear model for the return coe�cient produce the following values for the calibration

coe�cients:
Ac

5 = �0:29� 0:06(Ac

10�A
c

8)
Ac

11 = �3:6 + 5Ac

10 � 2Ac

13 � 12:7Ac

8� 3:8Ac

9

Ac

12 = �24:5� 44:2Ac

10� 2Ac

13 + 29Ac

8 � 8Ac

9

where Ac

8 = 0:8; Ac

9 = �1:0; Ac

10 = 0:01; Ac

13 = 0.

The homogeneous form of the continuity and normalization conditions have been used to produce

relations between the free parameters. They are:

Ac

1 + 4Ac

2 � 2Ac

8II + III(Ac

11+ Ac

12 + 2Ac

13) = 0
Ac

3 +Ac

4 + 5Ac

5 � II(Ac

11+ Ac

12 + 4Ac

13) = 0
Ac

6 +Ac

7 + 5Ac

8 + Ac

9 +Ac

10 = 0

3Ac

1 + 2Ac

2 � 2Ac

6II + 4Ac

13III = 0
3Ac

4 + 4Ac

5 � 2II(Ac

11+ 2Ac

13) = 0
3Ac

7 + 4Ac

8 + 2Ac

10 = 0

The fact that the Ac

i
must satisfy these equations has been used to express six of the Ac

i
f1�4; 6; 7g

in terms of the seven Ac

i
f5; 8� 13g in the expressions for the Ci = Bi + FAc

i
.

Appendix 2: The calibration coe�cients in the rapid-pressure representation

The model has been calibrated to match the �xed points of the homogeneous shear. The calibration

process is described more detail in this appendix. The following equations describe the evolution

of the anisotropy:

D=Dt bij = �2�ikpbpj
k � 2�jkpbpi
k � [bipUj ;p+bjpUi;p�2=3�ij < bS >]
�2=3Sij + 2bij < bS > +

Q
r

ij
=q2 � (C1 � 2)bij"=q2 + C2[b2ij + 2II=3�ij]"=q2

For the planar 
ow case with axial mean 
ow and mean shear, U1;2, the algebraic equations for the

�xed points, setting D=Dtbij = 0, become

(b11 + 1=3)(2 + 4b12Sk=")� 4b12Sk="+ 4(Sk=")
Q

r

11 =(4kS)� C1b11 � 2=3
+C2(b11b11 + b12b12 + 2II=3)� 8(
=S)(Sk")b12 = 0

b12(2 + 4b12Sk=")� 2(b22 + 1=3)Sk="+ 4(Sk=")
Q

r

12 =(4kS)� C1b12
+C2b12(b11 + b22) + 4(
=S)(Sk=")(b11� b22) = 0

(b22 + 1=3)(2 + 4b12Sk=") + 4(Sk=")
Q

r

22 =(4kS)� C1b22 � 2=3
+C2(b22b22 + b12b12 + 2II=3)+ 8(
=S)(Sk=")b12 = 0

(b33 + 1=3)(2 + 4b12Sk=") + 4(Sk=")
Q

r

33 =(4Sk)� C1b33 � 2=3 + C2(b33b33 + 2II=3) = 0

The last equation for b33 is not linearly independent as bjj = 0. The following �xed point values are

taken to be representative: b111 = 0:203, b112 = �0:156, b122 = �0:143, b133 = �0:06, (Sk=")1 = 5:54,
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(P=")1 = 1:73. are inserted into the algebraic equations above. The values of the invariants

corresponding to these values of the anisotropy tensor are: II1 = �0:0604; III1 = 0:0038; F1 =

0:5613. The solution of the algebraic equations describing the stationary state of the homogeneous

shear produces the following values for the calibration coe�cients,

Ac

5 = �0:3388� 0:06(Ac

8+ Ac

10) + 0:015C11 � 0:008C12
Ac

11 = �14:35� 2Ac

13 � 12:68Ac

8� 3:80Ac

9 � 5:072Ac

10+ 3:157C11 + 0:5898C12
Ac

12 = �16:87� 2Ac

13 + 28:7Ac

8 � 8:05Ac

9 � 44:81Ac

10� 12:17C11 � 0:291C12 :

The model has been left as general as possible - allowing for any return term of the canonical form,

�C1"bij + C2[b
2
ij
+ 2II=3�ij], were the Ci are not necessarily constants but have achieved their

asymptotic values Ci = C1
i
. Choosing a linear Rotta type return term setting the nonlinear return

coe�cient to zero, C2 = 0, produces

Ac

5 = �0:29� 0:06(Ac

10�A
c

8)
Ac

11 = �3:6 + 5Ac

10 � 2Ac

13 � 12:7Ac

8� 3:8Ac

9

Ac

12 = �24:5� 44:2Ac

10� 2Ac

13 + 29Ac

8 � 8Ac

9

where the following values of the free parameters have been chosen: Ac

8 = 0:8; Ac

9 = �1:0; Ac

10 =

0:01; Ac

13 = 0. These indicated calibration coe�cients are appropriate for the class of 
ows in which

the mean shear is the predominant production mechanism.

The component form of the rapid-pressure used in the equations for the stationary state is

Q
r

11 =2q
2S� = C4b12=3 + C0004 (b11b11 + b12b12 + 2II=3)b12+ C5b12(�W �=S�)

+[C6 + C0004 (b11 + b22)]b11b12 + C7(b11 + b22)b12=3
+C8(b11 + b22)b12(�W �=S�) + C9(W �=S�)b12(b12b12 � b11b22)

Q
r

22 =2q
2S� = C4b12=3 + C0004 (b22b22 + b12b12 + 2II=3)b12+ C5b12(W

�=S�)
+[C6 + C0004 (b11 + b22)]b22b12 + C7(b11 + b22)b12=3
+C8(b11 + b22)b12(W

�=S�) + C9(�W
�=S�)b12(b12b12 � b11b22)

Q
r

12 =2q
2S� = 1=2[C3 � 2IIC 003 + 3IIIC0003 ] + 1=2C4(b11 + b22) + C0004 (b11 + b22)b12b12

+C5(b11 � b22)(W �=2S�) + [C6 + C0004 (b11 + b22)]b12b12
+1=2C7(b11b11 + 2b12b12 + b22b22)
+C8(b11b11 � b22b22)(W �=2S�) + C9(b11b22 � b12b12)(b11 � b22)(W �=2S�)

Q
r

33 =2q
2S� = �2=3C4b12 + C0004 (b33b33 + 2II=3)b12+ (C6 + C0004 (b11 + b22))b12b33

�2=3C7b12(b11 + b22):
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Appendix 3: The representation of the integral of the two-point covariance

The general form of the fourth-order tensor polynomial used to model the volume integral of the

derivative of the two-point covariance, Xijkl, appearing in the Reynolds stress equation is

Xijkl= < upup >= A1�ij�kl + A2(�ik�jl + �il�jk)
+ A3�ijbkl +A4bij�kl + A5(bik�jl + bil�jk + �ikbjl + �ilbjk)
+ A6�ijb

2

kl
+A7b

2
ij
�kl + A8(b

2

ik
�jl + b2

il
�jk + �ikb

2

jl
+ �ilb

2

jk
)

+ A9bijbkl + A10(bikbjl + bilbjk)
+ A11bijb

2
kl
+A12b

2
ij
bkl + A13(b

2
ik
bjl + b2

il
bjk + bikb

2
jl
+ bilb

2
jk
)

+ A14b
2
ij
b2kl +A15(b

2

ik
b2
jl
+ b2

il
b2
jk
)

The coe�cients with all free parameters set to zero, as derived by Ristorcelli (1991) or in Ristorcelli

and Lumley (1987,1991), are

A1 = (111II + 73)=27IId� F (420II + 239)=135IId
A2 = �(69II + 32)=27IId + F (420II + 257)=270IId
A3 = (3II + 4)=3IId � F (11=10)=(1+ 3II)
A4 = (15II + 11)=3IId � F (4=10)=(1+ 3II)
A5 = �3(1 + 3II)=3IId+ F (3=10)=(1+ 3II)
A6 = �(102II + 61)=3IId
A7 = �2(33II + 20)=3IId � F (6=10)=(1+ 3II)
A8 = (42II + 23)=3IId
A9 = �(57II + 28)=3IId � F (3=10)=(1+ 3II)
A10 = (15II + 14)=3IId + F (9=10)=(1+ 3II)
A11 = �(102II + 61)=IId
A12 = �2(33II + 20)=IId
A13 = (42II + 23)=IId
A14 = 0
A15 = 0

where IId = (1+3II)(7+12II),F = 1+27III+9II , where II = �1=2bijbij and III = 1=3bipbpjbji.

The rapid-pressure correlation integral, Xpkj , appearing in the heat-
ux equations, is used to

derive the Ai through the joint-realizability constraint. The general form of the third-order tensor

polynomial used to model Xpkj is included for completeness:

Xpkj = D1 < �up > �kj +D2[< �uk > �pj+ < �uj > �pk ]
+ D3 < �up > bkj +D4[< �uk > bpj+ < �uj > bpk ]
+ D5 < �up > b2

kj
+D6[< �uk > b2

pj
+ < �uj > b2

pk
]

+ [D7bqp�kj +D8(bqk�pj + bqj�pk)] < �uq >

+ [D9bqpbkj +D10(bqkbpj + bqjbpk)] < �uq >

+ [D11bqpb
2

kj
+D12(bqkb2pj + bqjb

2

pk
)] < �uq >

+ [D13b
2
qp�kj +D14(b2qk�pj + b2

qj
�pk)] < �uq >

+ [D15b
2
qp
bkj +D16(b2qkbpj + b2

qj
bpk)] < �uq >

+ [D17b
2
qp
b2
kj
+D18(b2qkb

2
pj
+ b2

qj
b2
pk
)] < �uq >
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Where the Di are given in Ristorcelli and Lumley (1987,1991) as

D1 = �(312II2 + 149II � 21)=5IId� F (1=5)=(1+ 3II)
D2 = (48II2+ II � 14)=5IId+ F (3=10)=(1+ 3II)
D3 = �(324II2 + 222II + 17)=IId � F (3=10)=(1+ 3II)
D4 = �3=(7 + 12II) + F (9=10)=(1+ 3II)
D5 = �(102II + 61)=IId
D6 = (42II + 23)=IId
D7 = �2(3II + 4)=5IId� F (3=5)=(1+ 3II)
D8 = 27(2II + 1)=5IId
D9 = (42II + 23)=IId
D10 = (42II + 23)=IId
D13 = �8(39II + 22)=5IId
D14 = 2(24II + 17)=5IId
D15 = �27=(1 + 3II)

and D11 = D12 = D16 = D17 = D18 = 0: The �rst term of each of the coe�cients Ai; Di satis�es

the constraints of continuity, normalization, realizability, joint-realizability and 2DMFI. The terms

proportional to F are the terms that contribute to the rapid-pressure when the turbulence is away

from both the realizable and the 2DMFI limits.

Appendix 4: The Cayley-Hamilton theorem generalization

Reference has been made to a generalized Cayley-Hamilton theorem, Rivlin (1955), relating di�erent

powers of products of matrices.

ABC +ACB +BCA +BAC + CAB + CBA =
A(< BC > � < B >< C >) +B(< CA > � < C >< A >) + C(< AB > � < A >< B >)
+(BC + CB) < A > +(CA + AC) < B > +(AB + BA) < C >

+1[< A >< B >< C > � < A >< BC > � < B >< AC > � < C >< AB >

+ < ABC > + < CBA >]

The Cayley-Hamilton generalization is easily derivable from the Cayley-Hamilton theorem applied

to sums and di�erences of matrices A;B; C. The theorem is useful in eliminating redundant tensor

bases in tensor representation theorems. Here <> is used to indicate the trace. The Cayley-

Hamilton theorem for the anisotropy tensor is b3 = 1=3 < b3 > 1 + 1=2 < b2 > b. The theorem can

also be used to express

bSb = �[b2S+ Sb2]+ < bS > b+ 1=2 < b2 > S+ < b2S > 1

bSb2 + b2Sb = �1=3 < b3 > S+ < b2S > b+ < bS > b2

Appendix 4: The rapid-pressure models

The detailed form of the pressure-strain models referred to in this paper are as follows:

The Launder, Reece & Rodi Model

�ij = �2C1"bij +
4

5
KSij + C2K(bikSjk + bjkSik �

2

3
bklSkl�ij) + C3K(bikWjk + bjkWik)
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where

C1 = 1:5; C2 = 1:75; C3 = 1:31

The Shih & Lumley Model

�ij = ��"bij +
4

5
KSij + 12�5K(bikSjk + bjkSik�

2

3
bklSkl�ij) +

4

3
(2� 7�5)K(bikWjk + bjkWik)

+
4

5
K(bilblmSjm + bjlblmSim � 2bikSklblj�3bklSklbij) +

4

5
K(bilblmWjm + bjlblmWim)

where

� = 2 +
F

9
exp(�7:77=

p
Ret)f72=

p
Ret + 80:1 ln[1 + 62:4(�II + 2:3III)]g

F = 1 + 9II + 27III; II = �
1

2
bijbij ; III =

1

3
bijbjkbki

Ret =
4

9

K2

�"
; �5 =

1

10

�
1 +

4

5
F

1

2

�
:

The Fu, Launder & Tselepidakis Model

�ij = �1"bij + �2"(bikbkj �
1

3
bklbkl�ij)+

4

5
KSij + 1:2K(bikSjk + bjkSik �

2

3
bklSkl�ij)

+
26

15
K(bikWjk + bjkWik) +

4

5
K(bikbklSjl+bjkbklSil � 2bikSklblj � 3bklSklbij)

+
4

5
K(bikbklWjl + bjkbklWil)�

14

5
K[8II(bikWjk + bjkWik)+12(bikbklWlmbmj + bjkbklWlmbmi)]

where

�1 = 120IIF 1=2+ 2F 1=2 � 2; �2 = 144IIF 1=2

The Speziale, Sarkar & Gatski Model

�ij = �(2C1"+ C�1P)bij + C2"

�
bikbkj �

1

3
bklbkl�ij

�
+ (C3 � C

�

3II
1

2

b
)KSij

+C4K

�
bikSjk + bjkSik �

2

3
bklSkl�ij

�
+ C5K(bikWjk + bjkWik)

where

C1 = 1:7; C�1 = 1:80; C2 = 4:2

C3 =
4

5
; C�3 = 1:30; C4 = 1:25

C5 = 0:40; IIb = bijbij
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